Challenges in the Business Digital Ecosystems

Pierfranco Ferronato, Soluta.net
DBE Principal Architect

“Towards a network of digital ecosystems: which technology, which research and which instruments?”

Digital Ecosystem Workshop, 18 May 2005
Imagine...

...your offer/service/product to be
- described solely in business terms (What it does, how it does it, location, price, services...)
- discoverable by means of its Business specification and not by its technical specification
- visible to a wide business audience at the same level of titans companies
- competing with other similar offers and be reused, integrated and consumed in an automatic way
- integrated automatically in the customer back-office
- integrated with your back-office with minimum effort
- the IT is not in the critical path from business concept to realization

You imagine a Digital Business Ecosystem
Level of Information Exchange(*)

1) Inside-SME Application

2) Inter-enterprise applications

3) Inter Enterprise Applications

4) InterCommunities

Community A

Community B (DBE instance B)

(*) Concept of Peter Herzum
B2B vs Ecosystem

- **B2B**: static
 - Technologies may vary but are countable and predefined
 - Functional model is predefined
 - Business happens outside the B2B

- **Ecosystems**: dynamic
 - Technologies are not known in advance
 - Functional model is not predefined
 - Business happens inside the Ecosystem

- **B2B**: structured
 - Model based, data driven

- **Ecos**: evolving
 - Meta-model based and model driven

random network vs scale-free network
DBE Software Process

- Business Modelling
- Development
- Exploring/Search
- Service Execution Environment
- Execution
- Evolutionary Environment
- DBE Development Process
- DBE Community Instance
- Service Factory Environment

- Publish Service Manifest
- Register Proxy
- Publish BPEL
“Ecosystem Oriented Architecture”

- Business Service Factory
- Need to address a whole new set of issues
 - Semantically rich service description
 - Business specification
 - Ontology
 - Technical specification
 - Repository of models
 - Interoperability
- Service Discovery
- Web services does not scale up!
Service Factory

Semantic Distributed Registry

- XMI CIM Model (M1)
- XML CIM Data (M0)
- XMI PIM Model (M1)
- Fitness Data

DBE Studio

Ontology

- Publish

Model Repository

- Publish

- SDL

BML

- Organization
 - service
 - product
 - motivation
 - contract...

- input/outputs
- messages
- type
- parameters
- errors...

Integrated PSM Editor

- Java exceptions
- WSDL
- WS
- .Net...

Integrated PIM Editor

- Integrated CIM Editor

SDL

Ontology Register

Publish

Register

P2P Network (FADA)
Execution Environment

Service Consumer
- Front-end
 - Proxy
 - XMI BML Model (M1)
 - XML BML Data (M0)
 - XMI SDL Model (M1)
 - Fitness Data

Service Provider
- Servent
 - End point

Execute Service

Application
- Search SM
- Download SM
- Download Proxy
- Register Proxy

Service Manifest
- XMI BML Model (M1)
- XML BML Data (M0)
- XMI SDL Model (M1)
- Fitness Data

Semantic Distributed Registry

Domain Ontologies
- Ontology

Publish SM

DBE Studio

P2P Network (FADA)
Role of the Functional Reference Model

- Assuming services will share the same model is an unreachable myth
- There is no “singleton” reference model
 - Model adoption can no be enforced

- Anyone can publish and adopt any model
 - Role of the first players, will create consensus
Scale-free network of model adoptions

- If nodes are models and links are adoptions the ecosystem will create a scale-free-network, i.e.
 - Growing
 - Preferred Links
 - Fitness based
- Moving to a different cluster means adopting new business or computing standard
 - It is a barrier
- What about interoperability?

From Barabasi “Link”
Repositories

- Model dependency
- Model versioning
- Business and technical specification
- Bindes to ontology
- Decentralized and pervasive
 - Tuple space Technology
- How to navigate it?
 - It is not hierarchical
- UDDI is useless in Ecosystems
Enable the Competition in the Ecosystem

- Provide means to understand the Business offer
 - Model (e.g. price model)
 - Information (e.g. Actual prices)
- Functional specification
 - Technical interface
- QoS
 - Availability, performance,
Role of MDA™

- Support model representation with Domain Specific Languages (DSL)
 - Ontology, business, computing
- Support interoperability by model transformation
- Support interoperability by model encoding
- Provide a conceptual framework to work with:
 - Computation Independent Model, Platform Independent Model, Platform Specific Model
- Provide a standard API for model repository
Conclusion

- **Architecture**
 - Realizing an ecosystem is a multi-disciplinary effort

- **Implementation**
 - We need more than web service technology

- Meta-modelling is the way to go for abstraction, extension

- Interoperability is an issue